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Motivation
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An example for an use case of evolutionary algorithms [1]
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Introduction to Evolutionary Algorithms

Select
Parents
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Introduction to Evolutionary Algorithms

* Evaluate Fitness
* Examples: Traveled Distance, Survived Time, Highscore

* Select Parents
* Fortune Wheel, Tournament Selection

 Recombination
* N-Point Crossover, Unified Selection

* Mutation
 Bit-Flipping, Adding a delta



N-Point Crossover

11 1 0 0 O] 1

0] 0 1 1 11 0

N-Point Crossover [2]

23.05.2019 Al for Games - Oliver Mautschke



Neuroevolution

e Double Pole Problem
was THE Benchmark
for Controller Problems

* There is no loss

e Archived Time is the
fithess

Double Pole Balancing Problem [3]
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Neuroevolution — The Concept

* Encoding an ANN as a genome

* Applying genome to a task and measure their performance

* The difference to "classical” optimization approaches for ANNs: Not the
output loss is used, but the overall performance on a given task

* Evolving the ANNSs by optimizing the weights and/or topology
 Mathematical optimization of RNNs is a hard task
* NE can be used to evolve RNNs efficiently



Neuro Evolution of Augmented Topology

e Starting from a simple ANN

* Adding new nodes/connections and change the weights
* Speciation

* Enabling & Disabling connections

* |Innovation Numbers



Neuro Evolution of Augmented Topology

Parentl Parent2
1 2 2 4 5 8 1 2 3 4 5 6 7 9 10
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disjoint
1|2 |3 4 5 8
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DISAB DISAB
1
Concept of NEAT [4]
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Behavior Trees

* Encoding behavior of a

IfEnemyAtPosition(0, 1) Cco nt ro I I er
& e Action Nodes:
e Leafs

Right, Jump, Up IfMarioCanJump

/ \ e The final decision

' . , e Condition Nodes:
Right, Jump, Run/Fire IfMarioOnGround

* |f-else-statement
/ \ e Branching nodes

Left, Run/Fire Right, Down, Jump

Behavior Tree example [5]
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Evolving Behavior Trees

* BTs get encoded via a context-free gramatic into an array
* The array is used as a genome

* Crossover: Swapping subtrees of parents

* Mutation: Randomly replace nodes



Super Mario

Nintendo
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Using GAs for Super Mario - FSM

Triggers

* Seen an enemy

 Seen an obstacle
* Seen nothing

~  RUNSPEED
STATE

.

* Seen enemy & seen hole

“\ ' /
T = * Seen enemy & seen obstacle

e Seen hole & seen obstacle

State Machine [6]
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Using GAs for Super Mario — Learning Levels

* A genome encodes a whole level
* The genome is somehow the key for a level
* Through Evolutionary Algorithm the genome is evolved



Using GAs for Super Mario — Learning Levels

* One game lasts for 200 seconds
* Discretized in 15 ticks = 3000 actions per game
* With 22 possible actions = 223999 possible combinations

* Fitness: Distance + Killed Enemies + Collected Items

e Result: 12.000 points on average, 2010 Mario Al Championship
Winner had 9000 points on average



Using GAs for Super Mario — Learning Levels
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21: 4 ¥ » (A)

Combinations of Buttons [8]
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Using GAs for Super Mario — NEAT

Super Mario learned with NEAT [8]

23.05.2019

Al for Games

* Using NEAT to evolve a
controller

* Input: 16x13 grid of view
* Output: 6 Buttons as Bit-Vector

— Controller were able to solve a
level after 35 generations

Fitness: Distance

- Oliver Mautschke
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Using GAs for Super Mario — EBT

e Using a grid around Mario

* Entry can be enemie, block or
empty
e Additional information:
* Can Mario jump?
* |s Mario on the ground?

]Iln.'. a® .
Frg:rr;ﬁifrr;ﬁ ___ *Inthe paper, they compared it to
E}m]i;hﬁ w - NEAT, using the grid as input

Fitness: Distance

Super Mario Level with 7x7 input grld [5]
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e

N

[fMarioOnGround

IfMarioCanJump

Y

Y

[fMarioOnGround Left, Right, Jump, Up

IfEnemyAtPosition(1, 0)

IfMarioCanJump

LN

<

)

[fEnemyAtPosition(0, 1) IfBlock AtPosition(0, -1)

Run/Fire Run/Fire

IfEnemyAtPosition(1, 1)

[fEnemyAtPosition(0, 1)

\ /

A

J

Right, Jump, Up IftMarioCanJump Right, Jump, Up

Down, Jump, Up

Right, Jump, Run/Fire

Right, Up

IfEnemyAtPosition(1, 1)

IfMarioOnGround

RN

Right, Jump, Run/Fire [fMarioOnGround

AN

IfBlockAtPosition(1, 1)

/

y

Left, Run/Fire Right, Down, Jump

Left, Right, Jump, Up

[fBlockAtPosition(0, -1)

el

\

)

[fMarioCanJump

Left, Run/Fire

Right, Down, Jump

IfBlock AtPosition(0, -1)

 § \

\

IfEnemyAtPosition(0, 1)

I,

Resulting Behavior Tree [5]
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Conclusion

e Evolutionary Algorithms and Neuroevolution are a good approach for
every Task where no perfect strategy is known

* GAs and NE can be used if a solution can be encoded as genome and
a the performance of a solution can be rated

* GAs can find unusal solutions and are capable to cover a wide
behavior diversity

* BUT: GAs need a lot of computing power and the parameters have to
be optimized by hand in order to make the algorithm reach a good

solution
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