
some studies in machine learning using the
game of checkers
Arthur L. Samuel (1959)

Frank Gabel
April 25, 2019

Artificial Intelligence for Games, Heidelberg Collaboratory for Image Processing



Introduction: A short history of checkers

∙ Checkers has been played for about 5000 years (even by Plato and
Homer)

∙ It was likely invented in ancient mesopotamia

∙ Also: the first game in which an AI beat a human ever!
1



Introduction: The rules of checkers

2



Checkers from an AI perspective

∙ Checkers is “simple”: only 1020 board positions (Chess: 1047, Go:
10250)

∙ However: computers at the time (1950s) were simple, too: way too
complicated to evaluate every possible position

∙ Still: good candidate for proof-of-concept AIs

3



Prerequisite: Scoring polynomial

How are the minimax “scores” calculated?
Here: With a “scoring polynomial”: V(x) = a1x1 + · · ·+ anxn
The x1, . . . , xn contain numerical, hand-crafted features, for example:

Ratio Relative piece/kings advantage
Advancement The parameter is credited with 1 for each passive man

in the 5th and 6th rows (counting in passive’s
direction) and debited with 1 for each passive man in
the 3rd and 4th rows.

Pole The parameter is credited with I for each passive man
that is completely surrounded by empty squares.

4



Prerequisite: The MiniMax algorithm

∙ an algorithm for determining the optimal game strategy for finite
two-person zero-sum games with perfect information

∙ examples: Chess, Checkers, Go, Four Wins, Tic-Tac-Toe

5



Prerequisite: Alpha–beta pruning

∙ idea: decrease the number of nodes that are evaluated by the
minimax algorithm in its search tree

6



Samuel’s approaches to learning

Generally:
MiniMax + Alpha-Beta Pruning
The “learning approach”:
rote learning + learning-by-generalization

7



Rote Learning: Idea

∙ save all of the board positions encountered during play, together
with the computed evaluation scores until a depth of e.g. 3

∙ learning by memorizing

8



Rote Learning: Optimizations

∙ dynamic look-ahead distance
∙ increase storage capabilities by standardizing board setups

9



Rote Learning: Results

After having played “many” games (53,000 board positions saved),
Samuel reported:

∙ a very slow but continuous learning rate most effective in the
opening and end-game phases of the play

∙ the midgame was bad, probably due to a lack of “sense of
direction” (i.e. find the fastest way to win)

10



Generalization: Idea 1

“An obvious way to decrease the amount of storage needed to utilize
past experience is to generalize on the basis of experience and to
save only the generalizations.”

How do we go about that?

∙ customize the scoring polynomial of the minimax algorithm (in
particular, weights and term removal)

∙ make the algorithm play against itself and against human
opponents
∙ version A adjusts its coefficients after each move
∙ version B uses the same evaluation polynomial for the duration of any
game

∙ Then, if version A wins, set version B=version A. Otherwise,
randomize version A and repeat.

11



Generalization: Idea 2

“Attempt to make the score, calculated for the current board
position, look like that calculated for the terminal board position of
the most likely chain of moves.”

How do we go about that?

∙ Keep track of the difference using a δ

∙ goal: lower the difference between the calculated goodness of a
given board position (according to the evaluation function) and its
actual goodness (found through playing out the game to
completion)

∙ optimizations to the technique:
∙ replacement scheme
∙ binary connective terms

12



Generalization: Results

First: “tricky but beatable”. . .
Samuel observed the following defects:

∙ the program was frequently fooled by bad play on the part of its
opponent

∙ too frequent introduction of new terms into the scoring
polynomial and the tendency for these new terms to assume
dominant positions on the basis of insufficient evidence

∙ chance wins might result in wrongfully replacement of terms or
the whole scoring polynomial

⇒ Optimizing the scoring polynomial is hard!

13



Discussion and take-aways

∙ rote learning is an obvious and efficient way to improve the
program, but is no real “learning”

∙ learning-by-generalization was ground-breaking, making the
program learn by playing past versions of itself, which would one
day be a key component of AlphaGo

∙ What’s next? Samuel, 1969: Some studies in machine learning II

14



Thanks for your attention. For further
details and references, check out my report.

15


	anm0: 


