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ABSTRACT

Volumetric electron microscopy techniques, such as serial
block-face electron microscopy (SBEM), generate massive
amounts of image data that are used for reconstructing neu-
ral circuits. Typically, this requires time-intensive manual
annotation of cells and their connections. To facilitate this
analysis, we study the problem of automated detection of cell
nuclei in a new SBEM dataset that contains cerebral cortex,
white matter, and striatum from an adult mouse brain. The
dataset was manually annotated to identify the locations of
all 3309 cell nuclei in the volume. We make both dataset
and annotations available here. Using a hybrid approach that
combines interactive learning, morphological processing, and
object level feature classification, we demonstrate automated
detection of cell nuclei at 92.4% recall and 95.1% preci-
sion. These algorithms are not RAM-limited and can scale to
arbitrarily large datasets.

Index Terms— automated nucleus detection, block-face
electron microscopy, interactive segmentation, random forest,
block-wise connected components, connectomics, soma

1. INTRODUCTION

High-throughput volumetric electron microscopy techniques
have great potential for densely reconstructing neural cir-
cuitry in exquisite detail [1]. Extraction of useful information
from raw electron microscopy data, such as the morphology
of individual neurons and their connections, has largely re-
lied on time-consuming manual annotation. In this work, we
study the feasibility of automated neuronal and glial nuclei
detection and segmentation. The detected nuclei can be used
as seed points for subsequent manual or automated tracing
of neurites for morphological and circuit reconstructions.
Furthermore, nuclear structure is a useful indicator of cell
type; and nuclear locations make it possible to gather cellular
spatial statistics and perform quantitative cytoarchitectonics
for objective regional parcellations.
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Past studies on automated cellular nucleus detection have
relied on light microscopic detection of nuclei-specific mark-
ers such as NeuN [2] and DAPI [3]. In this case, blob-
detection algorithms are sufficient for reliable nuclei seg-
mentation because nuclei are the only objects labeled. In
contrast, in electron microscopy, all cellular membranes are
labeled, including not just nuclei and somas, but also mi-
tochondria, other sub-cellular organelles and an elaborate
network of neurites. The extensive membrane labeling cou-
pled with an absence of specific nuclear markers significantly
complicates the problem of nucleus segmentation and renders
blob-detection algorithms insufficient.

An additional complication is the massive size of volu-
metric electron microscopy datasets, which can easily exceed
terabytes and therefore require segmentation algorithms that
do not load the full dataset into RAM. Therefore we imple-
ment block-wise and component-wise processing techniques,
which enables the proposed nucleus detection algorithm to
scale to arbitrarily large datasets.

The main contributions of this study are: 1) the first algo-
rithm to detect neuronal and glial nuclei in large-volume serial
block-face electron microscopy (SBEM), and 2) block-wise
and component-wise processing of arbitrarily large volumes
(code available online).

2. DATASET DESCRIPTION

2.1. Data Acquisition

A 20-week-old male mouse brain was prepared in its entirety
for electron microscopy [4]. A sub-volume containing cere-
bral cortex, white matter, and striatum was extracted from
the epoxy-embedded whole brain with a trimmer (Leica) and
scalpel blade, and mounted on an aluminum stub. Back-
scattered electrons were imaged at 40nm pixel size in high
vacuum with SBEM [1] on a QuantaFEG 200 (FEI) and using
a heuristic-based algorithm for automated aberration correc-
tion [5]. The final stack size for the cortico-striatal dataset
was 4382× 3435× 30464 voxels, which was subsequently
downscaled 4 times for cell nucleus detection.



2.2. Data Format

The downscaled and cropped SBEM volume is grayscale (8-
bit) and 1024×768×7552 voxels (x, y, z) in size, where each
voxel is 160×160×200nm. It is available for download as
an HDF5 file, which can be easily viewed by HDFView or
read from using Python, Matlab or C. An example 2D subset
is shown in Fig. 1.

2.3. Ground Truth and Evaluation Criteria

All neuronal and glial nuclei within the volume were anno-
tated by domain experts. This ‘ground-truth’ contains 3309
nuclei with estimated center coordinates and radius. Since
many nuclei are not spherical, the annotated center and radius
is only a rough indication of location and size. The annota-
tions are available as a CSV file with x, y, z, and r columns.

In order to exclude boundary effects, we have removed
all spherical annotations intersecting the volume border. This
resulted in 2935 final annotations (provided as another file).
Before evaluation, the same procedure was applied to detec-
tion results. A detection is counted as a true positive only
once, and only if it overlaps by at least t voxels with a ground-
truth (where t is set as the ground-truth radius). If more than
one detection overlaps with the same ground-truth nucleus,
the detection with the largest overlap volume is counted as a
true positive; all other overlapping detections are counted as
false positives.
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Fig. 1. (Top) An example window (483×227 pixels) from
cerebral cortex (z = 640) from the original SBEM volume;
annotations show (a) neuronal nucleus, (b) glial nucleus, (c)
two closely-apposed neuronal nuclei. (Bottom) Output of the
neuronal and glial nucleus detection overlayed. The arrow
points to an endothelial cell nucleus that was not included in
the ground truth and was correctly not detected / segmented.

3. METHODS

Challenges associated with cell nucleus segmentation in
SBEM data can be summarized as intra- and inter-regional
variability between cell classes, sample staining and imaging
variability, and the existence of closely apposed nuclei and
cell clusters. Nucleus appearance varies significantly depend-
ing on cell type. Neuronal nuclei are generally large, spherical
and show a prominent, homogeneous nucleolus with dust-like
chromatin granules in a pale nucleoplasm, whereas glial nu-
clei tend to be smaller with condensed chromatin (Fig. 1)
[6]. Nuclei belonging to different sub-classes of neuronal
(pyramidal, medium spiny, GABAergic, cholinergic, etc.)
and glial (oligodendrocyte, astrocyte, etc.) cells found in our
dataset are also known to have distinct structural features [7].
Additionally, the proportion of cell classes varies between
different regions of the brain. For example, in our dataset,
the dominant cell class is pyramidal cell in cerebral cortex,
oligodendrocyte in white matter, and medium spiny neuron
in striatum, each displaying a unique nuclear structure.

As a first step towards neuronal and glial nucleus detec-
tion, we need a robust classification scheme to distinguish
voxels of these nuclei from other voxels (background), where
the latter is composed of a variety of neurites, sub-cellular
organelles, endothelial cells, and blood vessel lumen, which
have similar texture and intensity to the nuclei we aim to de-
tect. Moreover, closely apposed nuclei increase the potential
of under-segmented (merged) objects. The classifier should
detect as many nucleus voxels as possible, while not causing
over / under-segmentation. Subsequent processing steps at
component level can deal with false positive voxels.

Our proposed method is motivated by the above require-
ments and is comprised of three parts: First, we use ilastik
[8] to interactively train a random forest classifier. Second,
we perform thresholding and connected component analysis
on the classifier’s output probabilities. Filtering components
by size followed by morphological processing defines ob-
jects. Third, we extract shape and intensity based features for
each object and train a random forest classifier to obtain final
object-level (nucleus/ non-nucleus) decisions.

3.1. Voxel classification

For interactive training of a voxel classifier, we use the free
tool ilastik [8], which has already been used for synapse de-
tection on similar data [9].

ilastik computes a set of rotation invariant voxel features
(including smoothed raw data, gradient magnitude, Hessian
and structure tensor eigenvalues at various scales) in a 3D
neighborhood around each voxel. We set up a binary (nu-
cleus vs. background) classification problem. We take a very
small subset of data and label some nucleus and background
pixels. Then, an immediate classification result is produced,
overlayed on original data, and inspected by the user. Further



labels are given iteratively until results are satisfactory. After
training on the small subset, the classifier is used to predict
the nucleus class probability of all voxels in the remaining
volume.

3.2. Object detection

Next, we obtain a binary volume image by applying a thresh-
old on the nucleus class probability of each voxel. After a
connected component labeling, a size filter removes spurious
isolated voxels. Morphological filtering further refines the de-
tection candidates. These operations have to be performed
block-wise and component-wise because the data is too large
(available online, see end).

Connected component analysis works on blocks which
overlap by one voxel in all dimensions. In the first pass, a con-
nected component labeling is computed separately for each
block. Adding an offset value to each block’s labels ensures a
unique range. The resulting label images are compressed and
stored in RAM in order to avoid writing to the slower hard
disk. In the second pass, a union-find data structure (UFD) is
used to build the global connected component labeling. For
each pair of adjacent blocks, the two labels for each voxel in
the overlap region are merged in the UFD. Finally a dense re-
labeling (given by the UFD) is applied to each block and the
result is written to disk.

For each connected component we compute the centroid,
bounding box and its coordinate list by block-wise accumu-
lation. Then, connected components with fewer than Vth1

voxels are removed because tiny components can be excluded
from more expensive further analysis. We discuss the effect
of Vth1 on accuracy in Sec. 4.

To refine and separate merged components we employ
a sequence of 3D filtering and morphological operations.
First, we locally reconstruct the binary component using its
bounding box and coordinate list. Then, a 3D morphologi-
cal hole filling operation closes any holes. Next, to separate
attached nuclei we apply an 3D opening operation with a
sphere-shaped structuring element (SE) of radius rs = rp/K,
where K = 5 is a scaling constant, and rp is the pseudo-
radius value of the object rp = 3

√
3v/4π, and volume v.

Any newly created holes are filled again. The local volume
is re-labeled to analyze newly emerged components; any new
components with volume greater than Vth2 are added to the
output list of objects. The effect of Vth2 on the number of
true / false positive objects is discussed in Sec. 4.

3.3. Object classification

For each object in the list we calculate 41 features which
include: volume (v), normalized global centroid coordinate
(because nuclei vary along z-dimension), pseudo radius (rp),
number of surface voxels (s) (difference of the component
from its morphological erosion with a 3D cross SE of size

3×3×3), complexity (c = s · rp/v), aspect ratio of the bound-
ing box, ratio of bounding box volume to object volume, and
gray scale intensity histogram of 32 bins.

We train an additional random forest classifier. The labels
for the classifier are derived automatically from the overlap
of the objects with the ground truth center positions. For each
object, the classifier produces the nucleus class probability,
which is thresholded to obtain the final detection results. The
effect of the threshold value on true / false positive numbers
is discussed in Sec. 4.

4. EXPERIMENTS AND RESULTS

First, we evaluated the accuracy of the voxel classifier. In
order to obtain a representative training set, we sampled 20
small nucleus blocks (only 0.048% of the total volume) dis-
tributed along the z-axis to account for variances among nu-
clei and background appearance in different parts of the brain.
All features of ilastik were utilized.

After thresholding the probability at p = 0.5 and con-
nected component labeling (Sec. 3.2), the detected objects
were compared against the ground-truth; and true / false de-
tections were counted. The result was 93.22% recall (true
positives) at 0.05% precision due to more than five million
false positives (Tab. 1, row CC1). Increasing the volume
threshold slightly (Vth1 ∈ {5, 25}) reduced the number of
false positive detections significantly (CC2 and CC3). There-
fore, we set Vth1=25 for subsequent experiments.

Next, we evaluate the filtering and morphological process-
ing stage for different volume thresholds Vth2 = {0, 125, 625,
1000, 2500, 5000, 10000}. The results can be seen in the Ob-
ject Detection (OD) rows of Tab. 1. Even with no volume
threshold (OD1), the procedure increased the recall rate but
caused a slight drop in precision, due to separation of attached
nuclei. The precision improves significantly when Vth2 was
increased to 25 or 1000; however, larger values causes the
recall rate to drop faster.

Therefore, we take the 4189 candidates generated by
Vth2 = 1000 and evaluate the object classification stage
(OC). First, we have limited the training set to be formed
only of objects which were included in voxel classification
training volumes. This results in a training set of only 154
positive / 62 negative samples; the remaining 2704 positive
and 1269 negative samples were left for test. The result
of classification (on top of object detection) for prediction
threshold of 0.5 is shown in OC1 row of the Table 1. The
recall rate dropped to 90.65%; however, the precision has
improved significantly (OC1) and beyond the levels that
could be achieved by the filtering stage (compare OD5 with
OC1). Second, we tested distributing the samples randomly
and equally into training and test sets, which provided even
better results (OC2). Fig. 2 (a) shows Receiver Operating
Characteristics (ROC) curve for OC1 and OC2.

The distribution of ground truth hits/misses in Fig. 2 (c)



shows that the algorithm mainly misses small nuclei (presum-
ably glial) and nuclei located in striatum Fig. 2 (e). An exami-
nation of the results has shown that missed nuclei were mainly
glial, whereas almost all neuronal nuclei were detected and
segmented completely. This was often caused by the diffi-
culty of separating glial and background voxels which have
similar textures. The variability of nucleus volume among
true positives is shown in Fig. 2 (d); note that the distribution
of volumes among false positives confirms that smaller sized
objects mostly contributed to mistakes.

Table 1. Recall and precision performance of the different
stages of the method (see text).

Proc. Parameter Recall% Precision% #False
CC1 Vth1= 1 93.22 0.05 5591508
CC2 Vth1= 5 93.22 0.68 395894
CC3 Vth1= 25 93.05 4.5 57826
OD1 Vth2= 0 99.11 3.74 74846
OD2 Vth2= 125 99.01 18.70 12627
OD3 Vth2= 1000 97.38 68.22 1300
OD4 Vth2= 5000 93.08 87.22 400
OD5 Vth2= 10000 90.21 90.74 284
OC1 pth = 0.5 90.65± 0.5% 94.4± 0.4% 150± 1.1
OC2 pth = 0.5 92.43± 0.6% 95.1± 0.6% 70± 8.6
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Fig. 2. (a) ROC plots for the limited (OC1) and equally dis-
tributed training and test data (OC2). Distribution of: (b)
hit and missed ground truth nuclei w.r.t z position; (c) w.r.t
ground truth radius; (d) detection volume for true and false
positives. (e) Locations of hit (blue) and missed (red x) nu-
clei in the imaged part of the brain.

5. CONCLUSION

We have demonstrated accurate and fully-automated detec-
tion and segmentation of neuronal and glial nuclei with 92.4%
recall and 95.1% precision in membrane-contrasted volumet-
ric electron microscopy datasets. Further improvement in
classification performance is expected by using more training
data for the final stage classifier. Another avenue for im-
provement could be to enhance nuclear staining through the

use of nuclear-specific heavy-metal stains. Our algorithms,
which are not RAM-limited and can scale to arbitrarily large
datasets, will prove useful to future electron microscopy
studies investigating precise spatial relationships between
different cell types throughout the brain.
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